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Abstract

We first pursue the study of how hierarchy provides a well-adapted tool
for the analysis of change. Then, using a time sequence-constrained hi-
erarchical clustering, we develop the practical aspects of a new approach
to wavelet regression. This provides a new way to link hierarchical re-
lationships in a multivariate time series data set with external signals.
Violence data from the Colombian conflict in the years 1990 to 2004 is
used throughout. We conclude with some proposals for further study on
the relationship between social violence and market forces, viz. between
the Colombian conflict and the US narcotics market.

1 Introduction

In this article we will refer to Appendices 2, 3 and 4 for a basic introduction to
Correspondence Analysis, sequence-constrained hierarchical clustering and the



Haar wavelet transform on a hierarchy. In section [1.1] we will first review the
terminology that we use.

1.1 Terminology: Ultrametric and Wavelet Regression

By ultrametric we intend a precise definition of “hierarchy” which as such is
a loose concept. The ultrametric inequality holds for pairwise distances (for a
distance, d, defined for all pairs of points 4, j as a symmetric, positive-definite
mapping to the reals, the ultrametric inequality holds for all triplets of points,
i,j,k: d(i, k) < max{d(i,7),d(j,k)}). A set of ultrametric distances can be
derived from a binary (i.e., each non-terminal node has either one or two child
nodes; a terminal node has no child node), ranked (i.e., each node in the hierar-
chy has a “level” value associated which is typically positive real-valued) rooted
tree [2]. Reciprocally, a binary, ranked rooted tree, known as a dendrogram,
is a representation of an ultrametric set of distances. We can relax the binary
property of this tree but often it is algorithmically convenient to impose this.
By regression, we mean some mapping of independent or explanatory vari-
able = onto a dependent or response variable, y, such that the behavior of y
as a function of x can be studied. In this work, z is multidimensional, while y
is unidimensional. A novelty is that x is ultrametric, i.e. all triplets of points
satisfy the ultrametric inequality; or we avail of a hierarchical structure on zx.
Wavelet regression or wavelet smoothing is “potentially highly locally adap-
tive” [23]. A data signal or set of points is projected into a new basis such that
spatial and frequency properties are brought out or exposed. (Consider, for
comparative purposes, the following. A sinusoidal basis system used in Fourier
analysis helps with frequency properties but not with spatial. A basis of princi-
pal components helps with spatial properties but not with frequency properties.)
The wavelet transform projection itself is invertible. This means that data can
be reconstructed, after carrying out modifications in transform space. (The
same principle can be applied in Fourier analysis or principal component analy-
sis.) Modification in wavelet space typically involves setting low-valued wavelet
coefficients to zero, leading to a smoother reconstruction. A novelty in our work
is that we understand wavelet regression to involve both explanatory and re-
sponse variables, rather than just wavelet smoothing of erstwhile explanatory
variables.
As we will see below, our wavelet transform is a hierarchical one, in the sense
of being carried out on a hierarchical clustering or dendrogram. It is therefore a
wavelet transform in an ultrametric space, or an ultrametric wavelet transform.
In this context, the effect of wavelet coefficient thresholding leads to piece-
wise constant function approximation. We will sketch out the explanation for
this. The subnodes of any given node are determined in transform space by a
positive or a negative detail vector. (The dimensionality of this vector is the
dimensionality of the points we are working on. It is possible that these points
are single valued.) So left and right subnodes are defined as the parent node’s
vector, plus or minus (respectively) the detail vector. Setting the detail vector
to zero just means that the subnodes, in the reconstructed or wavelet-smoothed



data, now become, both identically, equal to the parent node. In other words,
within the cluster defined by the parent node, we now have a (constant within
the cluster) vector given by the parent node. Wavelet smoothing, in the way
that we are implementing it here, furnishes a constant vector within a cluster.

1.2 Time Series Segmentation and the Issue of Normal-
ization

The approach we develop in this article is based on the following.

1. A goal is “subsequence clustering” or segmentation.
2. Normalization and weighting of time series and attributes are addressed.

3. We closely interface the analysis with interpretation. We regress the hier-
archical segmentation on external time series.

We will discuss each of these briefly in turn, in a comparative setting. We
will also look at statistical changepoint analysis, and a divisive segmentation
tree approach.

Unlike in [30] we are concerned with segmentation of a multivariate time
series, and not clustering a collection of time series. This distinction is referred to
as, resectively, “whole clustering” and “subsequence clustering” by [11]. Singhal
et al. [30] build their clustering around principal components analysis, and we
also use Correspondence Analysis — appropriate for our frequency count data —
to provide an embedding from which distances can be easily defined.

The great deal of recent work on clustering within time series signals, e.g.
the incremental and divisive hierarchical algorithm of [29], has been critiqued
by [II] on the grounds of meaningfulness. Goldin et al. [7] however point out
that use of Fuclidean distance is overly simplistic and that data normalization is
needed, which they phrase in terms of “distances between cluster shapes rather
than between cluster sets”. The need to consider normalization issues very
attentively, and the close resulting links between distance, shape, and other
properties (size, scale, angle, etc.), are all well known in the Correspondence
Analysis area. See [I7], in particular chapter 4, which presents case studies of
analysis of size and shape, and financial time series modeling and forecasting.

In this article we develop a new approach to hierarchical clustering of mul-
tivariate time series based on a rigorous treatment of weighting of time series
and attributes.

1.3 Short Review of Clusterwise Segmentation

Our innovative approach incorporates piecewise or clusterwise approximation
to a time series or one-dimensional signal. Unlike [32], we do not seek to fit
patterns directly on the data. Similar type approaches have been pursued in
[15, 25l [10L [3T]. Instead we fit the piecewise approximation based on a given
hierarchical clustering. Furthermore we do not want to determine time series



segments in a void, removed from external explanatory and indeed causative
discussion. Therefore we are led to regress the hierarchical segmentation, as
an explanatory input, onto time series, comprising response variables, that are
external to the initial phase of hierarchical segmentation building.

IsoFinder [24] seeks to segment a genome sequence by repeatedly finding a
splitting point and looking for a significant difference in the subsequences to the
left and right of the splitting point. Significant difference comes from a t-test
between means to left and right; and a bootstrap-based setting of significance
level. One aspect of our approach that differs from IsoFinder is that we support
a fully multivariate input signal. IsoFinder could remain as a divisive approach
for multivariate input through use of a quadtree and octtree decomposition,
although it would become clumsy relative to our bottom-up tree-building.

Statistical changepoint analysis is exemplified by [6]. A probability model is
established for the changepoints. This probability mass function uses the dis-
tance between successive changepoints. Within segments linear or polynomial
regression is used. This is of unknown order which is to be estimated. Since
movement from one changepoint to the next uses transition probabilities, this
is to say that a Markov process is used. Positions of changepoints and the re-
gression model orders are sought, using stochastic optimization within a MAP,
maximum a posteriori, schema. In [5], piecewise linear regression is used for
“regression models where the underlying functional relationship between the re-
sponse and the explanatory variable is modeled as independent linear regressions
on disjoint segments.”

In [8] applied to speech and motion tracking, even if called “piecewise con-
stant” it is in our terminology “piecewise linear”: the model is local linear
regression with “piecewise constant parameters”.

In [12], the limits of a clusterwise linear approach are noted. A “piecewise
linear model can determine where the data goes up or down and at what rate.
Unfortunately, when the data does not follow a linear model, the computation
of the local slope creates overfitting.” In [12], adaptive polynomial (including
a 0 order, or constant) degree of fit in each piecewise region is pursued in the
modeling of stock prices and ECG data.

Relative to [6] and, for example, [33], our approach is not parametric. In
terms of evaluation therefore we are more concerned to link results with ex-
ternal data, both qualitative (e.g. causes of changepoints of varying degrees of
importance) and quantitative (e.g. other univariate time series). Therefore the
applications of our work and their context is somewhat different from these
parametric modeling approaches.

1.4 Structure of this Article

In this article, we will interchangeably refer to a time series defined on a timeline
and a signal with support given by this timeline. Broadly speaking we will also
use interchangeably the following terms: hierarchy, tree, dendrogram, ultramet-
ric space. A range of other terms, algorithms and methods are introduced and
discussed in the Appendices.



In section[2the data and problem is discussed, together with aspects relating
to methodology that are at issue in this article.

In section [3] the relevance and indeed importance of hierarchy in the data
analysis is addressed.

In section [4] the association of a hierarchy with an external signal is at issue.
We develop a new way to map the latter onto the hierarchy.

In section [p| we study how the mapping of external signal to the hierarchy
can lead to new insights.

2 Background of the Data

The data used in this work related to conflict violence and were produced by
CERAC, the Conflict Analysis Resource Center, www.cerac.org.co. We will refer
to the data used as the CERAC Colombia Conflict database. It is being grown
on an ongoing basis. From [26], we use high frequency micro-data, relating to
internal conflict violence in Colombia (population: 44 million) from 1988 to
2004, hence over a period of more than 16 years.

Conflict violence in Colombia is not based primarily on ethnic, religious,
or regional differences, as is often the case elsewhere, but it instead has roots
in economic and political factors. Economic drivers include, for instance, the
narcotics sector and kidnapping. The CERAC data records discrete action
types, their intensity, dates, locations and other information. Event types are
broken down at the first divide into clashes requiring multilateral engagement,
and attacks which are unilateral. Intensity breaks down mainly into killings
and injuries. For the data period, the Colombian conflict has seen more than
3000 killings plus injuries per year. One use of the dataset has been to analyze
civilian casualties [28].

In [9] distribution of fatalities over time was found to follow a power law.
Furthermore the work of these authors points to how remarkably similar power
law behavior can be found in conflicts ranging from Iraq to Indonesia. Such
power law behavior leads to self-similarity, i.e., burstiness on all aggregation
scales. (See examples of application of this in [I] and general discussion in [22].)
As a result it is difficult to smooth such data, and hence it is difficult to fit
simple parametric models. Under such circumstances it is feasible to seek and
find patterns and trends in the data, and it is precisely these goals which are at
issue in this work.

In this article, we present a novel approach for the study of dynamics. Firstly
we look at visualizations using Correspondence Analysis [17]. The output spa-
tial representation is an equiweighted Euclidean one, with embedding of both
rows and columns — events, and the attributes used for these events — and this
allows cluster analysis and other analyses to bypass any other form of data
normalization or standardization.

We then study change versus continuity over time, allowing for gradation in
such change. A hierarchical clustering is used, taking account of the timeline,



presenting change cluster, breakpoints and timeline resolution-related proper-
ties.

Context is offered by the following. In [3], the price of cocaine in the US
from 1983 onwards is found to be affected by interdiction effectiveness, and this
in turn is found to be beneficial in terms of reduced consumption, at least in
the short run.

In our analysis we will look at how narcotics prices might be related to
the Colombian violence. Causal mechanisms could take place in different ways.
For example a declining world market for narcotics could put great pressure on
production, leading to violent reaction when faced with declining returns. Or an
expanding market could lead to greater violence because the spoils are greater.
A further consideration is that causal mechanisms may work themselves out at
different rates, and even in different ways, on the wholesale and retail markets.
The retail markets for illegal narcotics are driven by actors who are distributed
far and wide relative to the locations of production.

The cocaine drug comes from the coca plant. Most initially processed cocaine
on the world narcotics markets come from Colombia. A main tool in combating
production by the Colombian government has been crop spraying, leading to
production being dispersed in jungle regions or national parks. The coca plant
is very different from the cocoa bean from the cacao tree, from which chocolate
is produced. Coffee, from coffee beans of the coffee plant, is the leading legal
agricultural export from Colombia. The latter fact is important because (for
example, as just one possible economic mechanism) a declining market for coffee
could conceivably lead to product substitution in response.

Opiates come from the opium poppy. Like cocaine, opiates are also nar-
cotic alkaloids. Morphine, derived from opium, is used for medicinal purposes,
whereas heroin is a generally banned narcotic. While poppy production has
been at times of some significance in Colombia, mostly the leading opiates pro-
ducer worldwide has been Afghanistan. However for supply of opiates to the
US, Colombia and Mexico play a major role. As noted above in regard to the
complexity of economic mechanisms, there are intricate linkages between, say,
cocaine and opiates, involving many social actors.

3 Hierarchy: Tracking and Prioritizing of Change

3.1 Data

We used 144 numerical attributes relating to killings and injuries coming from
20,288 dated events: see Appendix 1. Aggregating by month the numerical data,
144 attributes used, yielded data for 204 successive months. Further aggregating
by year provided us with data for the 15 years, 1990 to 2004, each year having a
144-valued vector of values where we eliminated 1988 and 1989 because we did
not have narcotics data for these years (see section .

A short periodization of the conflict is as follows [26]: reintensification of con-
flict in 1986, roughly constant then to 1994, followed by continuous acceleration.



1988-1991, “adjustment period” due to the end of the Cold War; 1992-1996,
“stagnation period”; and from 1997 onwards, “upsurge period”. In the section
to follow there will be further discussion of periodization.

3.2 Considerations on the Analysis

Figure [1] shows a best planar representation, accounting for 62% of the infor-
mation content of the data as expressed by the combined moments of inertia of
the cloud of years (or of the cloud of attributes) about these two axes. Follow-
ing somewhat clumped characteristics of the years 1990 through 1997, there is
a break then with the year 1998. From 1997 an arc is formed, up to 2004. A
break between the years 1997 and 1998, (i), is followed by a later break, between
2001 and 2002, (ii).

The 1998 changepoint, (i), was in a period when guerrilla gains from 1996
onwards were being reversed, a process that was seen to be so by 1999. There
were high levels of government casualties in 1997-1998, due to guerrilla opera-
tions against isolated military and police bases. In particular through airborne
weaponry, the government got the upper hand. The “upsurge period” from 1997
onwards also saw a rise of (anti-guerrilla) paramilitary activity whereas before
they had been involved in drug trafficking. The paramilitaries started opera-
tions around 1997. There was a consolidation of paramilitary groups in 1997,
announced publicly in December 1997, and they became active then, having
many of their own number killed. It was not until 1999 that paramilitaries be-
gan to kill large numbers of guerrillas. Among all of these mutually influencing,
reinforcing or retarding, trends and events, our analysis points to a succession
of two years where the global change was most intense.

We now come to the 2002 changepoint, (ii). A peak of (paramilitary) casu-
alties brought about by government against paramilitaries was in 2002 due to
aerial bombardment of a paramilitary position under attack by guerrillas. It
was a major setback for the paramilitaries, who declared a truce following the
election that year of President Alvaro Uribe.

Figure[2]shows (i) the caesuras between 1997 (8th year) and 1998 (9th year);
and (ii) between 2001 (12th year) and 2002 (13th year). Subtrees before and
after these caesuras are clearly distinguishable in the full tree. In line with
Figure |1} what Figure [2| indicates is that these are the important caesuras in
this data. Note that the same data as seen in the planar projection in Figure
viz. the factor 1 and 2 projections, is used for the construction of the hierarchy
of Figure [2]

The data used to construct the hierarchy in Figure[2]is of inherent dimension
min (20288 events, 204 months, 144 attributes, 15 years) —1 (from section
see also Appendices 1 and 2). Furthermore, based on Figure we in fact
used the first two factors only. So the input data dimensionality on which the
hierarchy in Figure [2]is based is 2.
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Figure 1: Correspondence Analysis of the annual aggregated data using 144
attributes. Years shown. As discussed in the text, gaps representing the more
important changepoints are (i) between 1997 and 1998; and (ii) between 2001
and 2002.
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Figure 2: Hierarchical clustering of the fifteen years from 1990 to 2004, using
the principal factor values from Figure[I] A sequence constrained complete link
agglomeration criterion was used. The main caesuras or changepoints here are
(i) in moving from year 8 = 1997 to year 9 = 1998; and (ii) in moving from year
12 = 2001 to year 13 = 2002.
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Figure 3: Wholesale street prices of opiates in the US over 15 years, 1990 to
2004. (Source of data: [34].) Ordinate units are US$/kg.

3.3 Novelties in Methodology

Correspondence Analysis (Figure [1) embeds both annually aggregated events
and their attributes in the same Euclidean space. As a basis for subsequent
analysis, e.g. clustering, weighting and normalization are taken care of as part
of the Euclidean embedding algorithm. Appendix 2 presents an overview of
Correspondence Analysis.

The hierarchical clustering of Figure [2]is built on the timeline. This means
that clusters are contiguous on the yearly timeline. Input to the hierarchical
clustering is factor projections from the Correspondence Analysis implying that
the 15 yearly aggregated events are equiweighted and endowed with the Eu-
clidean distance. Appendix 3 presents an overview of this sequence-constrained
hierarchical clustering.

Figure [2] provides a hierarchical understanding of the Colombian conflict
violence over the years 1990 to 2004. It ranks change by order of importance.
Bigger change is associated with more distinct branches in the tree. A hierarchy
defines an ultrametric topology. So we can justifiably characterize Figure [2| as
an ultrametric, or tree metric, understanding of the Colombian conflict violence.
In the same way the semantics of Colombian society are displayed in a metric,
rather than ultrametric, way in Figure [T}
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4 Association between Hierarchical Understand-
ing and External Signal

4.1 Regressing Opiates Wholesale Prices Response Vari-
able on Explanatory Hierarchy

We have a structured view in Figure [2] of the socio-dynamics of the situation
in Colombia over the years 1990 to 2004. Let us call it H. This is the set
of interrelationships expressed in Figure 2] over the years 1990-2004. It is a
summarized view of those years. It is a synthetic view, and depends not just
on the algorithms applied but — a most important aspect — on the input data
used. As a structured view of the socio-dynamics of Colombia, we now seek to
associate H with other external signals defined on the same time period.

As potentially relevant economic sectors outside Colombia we will consider
the narcotics sector. We will consider two narcotics signals.

Figure [3] shows the opiates wholesale price, in the US, averaged per year,
in US$/kg. Our aim is to look for linkages between the evolving Colombian
socio-dynamic expressed in Figure 2] and distant reflections of this, such as the
particular narcotics market situation shown in Figure[3] Production is expressed
(in a highly complicated way) in the former, Figure [2| while consumption is
expressed in the latter, Figure

As noted in section there are particular breakpoints easily visible in
Figure [2] e.g. in moving from year 8 = 1997 to year 9 = 1998; and in moving
from year 12 = 2001 to year 13 = 2002. In Figure [3] something of this is visible
too: year 9 is early in a period of precipitous fall (i.e., fall in wholesale price);
and year 13 is a clearly visible turning point.

Let us map the opiates data in Figure |3|into the hierarchical structure, H,
of Figure One way to do this is to have a set of within-cluster constant
approximations to the opiates (Figure [3| data), and furthermore to allow for a
range of such constant approximations.

In practice we will use constant approximations of the opiates data, Figure
that are governed by the embedded clusters of H, Figure [2| However we will
not proceed by cluster level (or dendrogram level from the root) because this
would imply different cluster cardinalities at each level — and hence a not very
sensible ordering of what are ultimately approximations to the full data set.
We will read off approximations to the hierarchy by decreasing differences in
information between dendrogram levels. We will allow ourselves to be guided
by these differences in information between levels. This information is available
to us through the dendrogram’s Haar wavelet transform. See Appendix 4 for
background detail.

In Figure [4, we see the succession of better approximations, quantified by
mean squared error (MSE), as given by decreasing absolute values of the den-
drogram Haar wavelet detail coeflicients.

In regard to use here and later of MSE, note that the size of this goodness of
fit value is strongly influenced by the signal’s values, — cf. ordinates in displays.
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The MSE is not scale-invariant and the ordinate scale impacts on the MSEs.
Note that the indication “thresholded at level 3”, for instance, in Figure [4]

is to be understood as at the third, ordered by decreasing value, wavelet detail

coefficient. This is not necessarily the third dendrogram level from the root.

4.2 Further Response Variables

We additionally now consider a set of signals, see upper left panel in Figures [4]
[l and [7] There are, including the initial analysis of the previous section:

e Opiates and cocaine retail prices (street price), US$/gram, see [34].
e Opiates and cocaine wholesale price, US$/kg, see [34].

In Figures [ [B] [6] and [7] exact reconstruction of the input signal, displayed
in the upper left, is possible if no thresholding is used.

Figure [f] shows the successive approximations to the opiate retail prices —
again in the US, from 1990 to 2004, street prices in US$/gram [34].

Figure[6] shows the successive approximations to the cocaine wholesale prices
— in the US, from 1990 to 2004, in US$/kg [34].

Figure |Z| shows the successive approximations to the cocaine retail prices —
in the US, from 1990 to 2004, street prices in US$/gram [34].

4.3 Novelties in Methodology

We denote the hierarchy in Figure |2/ as H and a signal such as that in Figure
as [. Both H and [ have the same support, viz. the ordered years 1990 to
2004. We are projecting the ultrametric space, H, onto the signal [. We have:
f +H — [. This can be viewed too as an ultrametric regression, i.e. we are
regressing [ on H. We estimate our signal from the hierarchy: [ = f(H).

Consider now the segmentation as a clusterwise regression problem. We
could approach the clusterwise regression by partition that is read off the hier-
archy in Figure[2] Using the Haar wavelet transform instead reads off partitions
in order of MSE (mean square error) of approximation of the input signal by the
wavelet filtered and reconstructed signal. The MSE provides us with a measure
of the approximation of the piecewise constant (which is also linear: but for
constant ordinate or response variable) fit to the input signal. Note that each
partition of the hierarchy covers the full signal, i.e. each partition is by definition
defined on the input’s support.

5 Patterns in Data Reflecting the Known Hier-
archical Structuring of Events

5.1 Smoothing based on Ultrametric Wavelet Transform

A baseline scenario for what we now seek is shown in Figure[8] In this figure we
show a simple and direct clusterwise fit to each of the four signals. We replace

12
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Figure 7: Upper left: cocaine, retail prices, over the 15 years, 1990 to 2004. Then
from left to right, row-wise: reconstruction of the data based on thresholding
using decreasing absolute values of the dendrogram wavelet detail coefficients.
The MSE, mean square error, indicates the quality of approximation.
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Crude 3 segments Fig.[§ 1 —8 9-12 13- 15
Opiates wholesale Fig.[9] 1 -8 9-10 11-12 13- 15
Opiates retail Fig.9f 1 -5 6-8 9- 15
Cocaine wholesale Fig.[10] 1 -5 6-8 9- 15
Cocaine retail Fig.[1o, 1 -5 6-8 9- 15

Table 1: Breakpoints in the Colombian 15-year violence timeline. The break-
points were read off the figures noted in the Table. We see, for example, that for
the cocaine wholesale signal, the breakpoints are such that there is a segment
consisting of years 1 to 5; then a segment of years 6 to 8; and finally a segment
from year 9 to year 15. From the crude signal segmentation of Figure [§] and the
wavelet smoothings of Figures [0] and there is considerable consistency.

the first eight values, in the first cluster, with their mean value; and similarly for
the second cluster; and the third. The goodness of fit is given for each quadrant
from upper left to lower right as indicated in the figure caption.

Can our wavelet regression perform better? The mean square errors (MSEs),
we find, are improved in all four cases. Respectively, as we will see, the MSE of
opiates wholesale decreases from 223 to 206. The MSE of opiates retail decreases
from 1533 to 616. The MSE of cocaine wholesale decreases from 305 to 290.
And the MSE of cocaine retail decreases from 18 to 12.

From Figures [ [} [6] and [7] we selected segmentations with at least three
segments in each, corresponding to the major breakpoints discussed in section
The signals used and the clusterwise constant approximated versions are
shown in Figures [9] and [0}

Figures [9] and [I0] can be viewed as follows. From the hierarchy in Figure
with its important caesuras as discussed in section take a range of within-
cluster signal values as their mean. This implies that we have a piecewise linear
approximation of the signals, in the sense of clusterwise constant. Compared
to our baseline scenario shown in Figure [§] we intervene on — modify in wavelet
transform space — a number of clusters characterized by small changes in the
hierarchy.

Our baseline of Figure [§| shows breakpoints over the 15-year time span. The
respective breakpoints of Figures[J and [I0]are largely consistent, as summarized
in Table |1, while (we may say informally) using the hierarchy as a “key” or
“template”.

5.2 Interpretation of Trends and Patterns

Figure [11| shows panels containing (respectively from upper left to lower right)
opiates wholesale price and retail price signals; and cocaine wholesale and retail
price signals. Over these have been superimposed their approximations that
approximate the hierarchy, H.

Note how for both wholesale signals, opiates and cocaine (left up and left
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Figure 8: We take the three clearest clusters in Figure[2] viz. from year 1 = 1990
to year 8 = 1997; from year 9 = 1998 to year 12 = 2001; and from year 13 = 2002
to year 15 = 2004. Then we simply trace the piecewise constant fits, in each
case, to the four different narcotics market signals. These fits are shown by the
small circle piecewise constant curves. The mean square errors are, respectively
for opiates wholesale and retail, and cocaine wholesale and retail: 223, 1533,
305 and 18.
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Figure 9: Left: opiates, wholesale and retail prices, over the 15 years, 1990 to
2004. Right: corresponding reconstruction of the signal based on wavelet detail
thresholding. (The two upper panels are identical to panels shown in Figure |4
and the two lower panels are identical to panels shown in Figure )
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Figure 10: Left: cocaine, wholesale and retail prices, over the 15 years, 1990 to
2004. Right: corresponding reconstruction of the signal based on wavelet detail
thresholding. (The two upper panels are identical to panels shown in Figure @
and the two lower panels are identical to panels shown in Figure )

20



Smooth: MSE = 206 Smooth: MSE = 616

Q o

T © - —

8 — | § ]

© ] L o

s g 2 &

0 o T —

] — =

1 o

.g 3 - @) § _

®) T T T T T 1 T T 1T T T 1
2 4 6 8 12 2 4 6 8 12
Years 1990 to 2004 Years 1990 to 2004

Smooth: MSE = 290 Smooth: MSE =12

[0}

= o

© _ —

g =S T QA

© o —

= —]

= o 2 Cu)) m

o) N T ‘S _

£ _ o

< o un _|

g 8- o

O T T T T T 1 T T 1T T T 1
2 4 6 8 12 2 4 6 8 12
Years 1990 to 2004 Years 1990 to 2004

Figure 11: Shown are the input signals with one selected smooth from, respec-
tively, Figures [6] and [7] The same plots are shown separately in Figures
[ and The smooth referred to here is the piecewise linear smooth. The
goodness of fit between piecewise linear (more strictly, clusterwise constant) fit
and original signal is given by MSE, mean square error.
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down panels in Figure , the hierarchy-representing signal is to the left of or
equal to the wholesale price signal from, and including, years 8 = 1997 to 12 =
2001. In those years the information from the hierarchy, expressing the Colom-
bian conflict, was lower than the wholesale price. Now, the wholesale price itself
was falling. So we conclude that this points to the Colombian internal conflict
as having possibly played a causative role in the wholesale price movement.

The corresponding situation for the retail price signals (right up and right
down in Figure is different in this regard. The analogous influence by the
Colombian internal conflict on the retail price movement is taking place from
year 6 = 1995 to year 7 = 1996, and again from year 8 = 1997 to year 11 =
2000.

From a visual point of view there is a tighter fit between the opiates (top
two panels in Figure compared to cocaine (bottom two panels in Figure .
Note that the opiates wholesale hierarchy fit is the only one with 4 segments;
all others have 3 segments. This was due to our selection of partition. It
is interesting to note the similarities of our findings, i.e. the same years being
indicated for the two wholesale signals, and again the same years being indicated
for the two retail signals.

Obviously we are dealing with one possible mechanism relating to price for-
mation here and there are other causal factors.

While we use 144 attributes in this work for tracking overall violence levels,
and while we find that breakpoints in the conflict occur at consistent times
relative to big movements in narcotics prices, we note that these narcotics prices
are largely falling in the period considered. So it is not feasible to seek a link
between prices and increasing or decreasing violence. Ultimately we are looking
for more subtle associations.

An unanticipated finding that comes out of this analysis is as follows. One
could well expect the Colombian conflict to be a driver of US cocaine prices.
What we have found is that the Colombian conflict could also be influential in
regard to US opiate prices. We note this as a potentially useful lead.

5.3 Novelties in Methodology

Figure [T1] shows inter-related breakpoints arising from the hierarchical inter-
pretation of the Colombian conflict violence from 1990 to 2004. Each wavelet
filtering and reconstructing of the data provides one set of breakpoints. The
simplest way to approximate any other signal — for example, the annually av-
eraged wholesale price of opiates in the US — is to use a clusterwise constant
fit to the signal with the breakpoints taken into account. This is what is done
in Figure 8l What is innovative about the wavelet-based smoothing is how the
breakpoints, defining the piecewise linear approximation, are defined. They are
defined from the partial order specified by H.
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6 Conclusion

We have described how hierarchy expresses changes at varying scales; how hier-
archy can be induced on a time-varying data set; and then how other data sets
defined on the same timeline can be “folded over” the hierarchically structured
data. Our aim is initial screening of relationships which may lead to later stages
of modeling, as exemplified by the following.

Taking the important products, coffee and oil, for the Colombian economy,
with the former being labor-intensive and the latter capital-intensive, [4] stud-
ied their relationship on the Colombian conflict at a low (fine granularity) level:
“Exploiting exogenous price shocks in international markets, we find that a drop
in the price of coffee during the late 1990s increased civil war violence in mu-
nicipalities that cultivate coffee more intensively. In contrast, a rise in oil prices
during the same period induced greater conflict in the oil municipalities relative
to the non-oil region. Lower coffee prices exacerbated conflict by reducing wages
and the opportunity cost of recruiting fighters into armed groups, while higher
oil prices fuelled conflict by increasing contestable revenue in local governments,
which invited predation by groups that steal these resources.”

Compared to this we have sought to preserve a wide range of levels of ag-
gregation. We do this because of our view that causative factors are often on a
range of resolution levels. Scale, in this case temporal, is important. So rather
than the simple smoothing of Figure |8| we instead wanted to take more of the
hierarchical information into account. Apart from the goodness of fit being im-
proved there were also a few intriguing findings — to be further studied with
more detailed data — relating to the relationship between market processes and
conflict violence.

Appendix 1: Attributes

144 attributes were used for all events. Organisational acronyms used here:
FARC, Armed Revolutionary Forces of Colombia; ELN, National Liberation
Army; ERP, Popular Revolutionary Army; CGSB, Simon Bolivar Guerrilla
Coordination; DAS, Administrative Security Department; M-19, 19th of April
Movement.

KO, Number of civilians killed

K1, Number of military forces members killed

K2, Number of police members killed

K3, Number of paramilitaries killed

K4, Number of ELN members killed

K5, Number of FARC members killed

K6, Number of EPL members killed

K7, Number of ERP members killed

K8, Number of other guerrilla group members killed

K9, Number of other group members killed

K10, Number of other non-identified group members killed
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K11, Number of CGSB members killed

K12, Number of DAS members killed

K13, Number of M19 members killed

10, Number of civilians injured

11, Number of military forces members injured

12, Number of police members injured

I3, Number of paramilitaries injured

14, Number of ELN members injured

15, Number of FARC members injured

16, Number of EPL members injured

17, Number of ERP members injured

18, Number of other guerrilla group members injured

19, Number of other group members injured

110, Number of other non-identified group members injured

111, Number of CGSB members injured

112, Number of DAS members injured

113, Number of M19 members injured

KGue, Number of guerrilla members killed

KPar, Number of paramilitary members killed

KGob, Number of government members killed

KCiv, Number of civilians killed

K, Number of killings

IGue, Number of guerrilla members injured

IPar, Number of paramilitary members injured

IGob, Number of government members injured

ICiv, Number of civilians injured

I, Number of injured

KIGue, Number of guerrilla members casualties

KIPar, Number of paramilitary members casualties

KIGob, Number of government members casualties

KICiv, Number of civilians casualties

KI, Number of casualties

KCIAtCivGue, Number of civilians killed in guerrilla events
KCIlAtCivPar, Number of civilians killed in paramiltary events
KCI1AtCivGob, Number of civilians killed in government forces events
KICivELN, Number of civilian casualties in ELN events
KICivFARC, Number of civilian casualties in FARC events
KCivGueMas, Number of civilians killed in guerrilla massacres
KCivGuelnc, Number of civilians killed in guerrilla incursions
KCivGueBom, Number of civilians killed in guerrilla bombings
KGueGue, Number of guerrillas killed in guerrilla unilateral attacks
KParGue, Number of paramilitaries killed in guerrilla unilateral attacks
KGobGue, Number of government members killed in guerrilla unilateral attacks
KCivGue, Number of civilians killed in guerrilla unilateral attacks
KTotGue, Total number of killings in guerrilla unilateral attacks

IGueGue, Number of guerrillas injured in guerrilla unilateral attacks
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IParGue, Number of paramilitaries injured in guerrilla unilateral attacks

IGobGue, Number of government members injured in guerrilla unilateral attacks
ICivGue, Number of civilians injured in guerrilla unilateral attacks

ITotGue, Total number of injured in guerrilla unilateral attacks

KIGueGue, Number of guerrilla casualties in guerrilla unilateral attacks

KIParGue, Number of paramilitary casualties in guerrilla unilateral attacks
KIGobGue, Number of government member casualties in guerrilla unilateral attacks
KICivGue, Number of civilian casualties in guerrilla unilateral attacks

KITotGue, Total number of casualties in guerrilla unilateral attacks

KGuePar, Number of guerrillas killed in paramilitary unilateral attacks

KParPar, Number of paramilitaries killed in paramilitary unilateral attacks
KGobPar, Number of government members killed in paramilitary unilateral attacks
KCivPar, Number of civilians killed in paramilitary unilateral attacks

KTotPar, Total number of killings in paramilitary unilateral attacks

IGuePar, Number of guerrillas injured in paramilitary unilateral attacks

IParPar, Number of paramilitaries injured in paramilitary unilateral attacks
IGobPar, Number of government members injured in paramilitary unilateral attacks
ICivPar, Number of civilians injured in paramilitary unilateral attacks

ITotPar, Total number of injured in paramilitary unilateral attacks

KIGuePar, Number of guerrilla casualties in paramilitary unilateral attacks
KIParPar, Number of paramilitary casualties in paramilitary unilateral attacks
KIGobPar, Number of government member casualties in paramilitary unilateral attacks
KICivPar, Number of civilian casualties in paramilitary unilateral attacks
KlITotPar, Total number of casualties in paramilitary unilateral attacks

KGueGob, Number of guerrillas killed in government unilateral attacks

KParGob, Number of paramilitaries killed in government unilateral attacks
KGobGob, Number of government members killed in government unilateral attacks
KCivGob, Number of civilians killed in government unilateral attacks

KTotGob, Total number of killings in government unilateral attacks

IGueGob, Number of guerrillas injured in government unilateral attacks

IParGob, Number of paramilitaries injured in government unilateral attacks
IGobGob, Number of government members injured in government unilateral attacks
ICivGob, Number of civilians injured in government unilateral attacks

ITotGob, Total number of injured in government unilateral attacks

KIGueGob, Number of guerrilla casualties in government unilateral attacks
KIParGob, Number of paramilitary casualties in government unilateral attacks
KIGobGob, Number of government member casualties in government unilateral attacks
KICivGob, Number of civilian casualties in government unilateral attacks
KITotGob, Total number of casualties in government unilateral attacks

KCivOth, Number of civilians killed in other group unilateral attacks

ICivOth, Number of civilians injured in other group unilateral attacks

KICivOth, Number of civilian casualties in other group unilateral attacks
KGueClGobGue, Number of guerrillas killed in government-guerrilla clashes
KParClGobGue, Number of paramilitaries killed in government-guerrilla clashes
KGobClGobGue, Number of government members killed in government-guerrilla clashes

KCivClGobGue, Number of civilians killed in government-guerrilla clashes
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KTotClGobGue, Total number of killings in government-guerrilla clashes
IGueClGobGue, Number of guerrillas injured in government-guerrilla clashes
IParClGobGue, Number of paramilitaries injured in government-guerrilla clashes
IGobClGobGue, Number of government members injured in government-guerrilla clashes
ICivClGobGue, Number of civilians injured in government-guerrilla clashes
ITotClGobGue, Total number of injured in government-guerrilla clashes
KIGueClGobGue, Number of guerrilla casualties in government-guerrilla clashes
KIParClGobGue, Number of paramilitary casualties in government-guerrilla clashes

KIGobClGobGue, Number of government member casualties in government-guerrilla clashes

KICivClGobGue, Number of civilian casualties in government-guerrilla clashes
KITotClGobGue, Total number of casualties in government-guerrilla clashes
KGueClGobPar, Number of guerrillas killed in government-paramilitary clashes
KParClGobPar, Number of paramilitaries killed in government-paramilitary clashes

KGobClGobPar, Number of government members killed in government-paramilitary clashes

KCivClGobPar, Number of civilians killed in government-paramilitary clashes
KTotClGobPar, Total number of killings in government-paramilitary clashes
IGueClGobPar, Number of guerrillas injured in government-paramilitary clashes
IParClGobPar, Number of paramilitaries injured in government-paramilitary clashes

IGobClGobPar, Number of government members injured in government-paramilitary clashes

ICivClGobPar, Number of civilians injured in government-paramilitary clashes
ITotClGobPar, Total number of injured in government-paramilitary clashes
KIGueClGobPar, Number of guerrilla casualties in government-paramilitary clashes
KIParClGobPar, Number of paramilitary casualties in government-paramilitary clashes

IGobClGobPar, Number of government members injured in government-paramilitary clashes

ICivClGobPar, Number of civilians injured in government-paramilitary clashes
ITotClGobPar, Total number of injured in government-paramilitary clashes
KIGueClGobPar, Number of guerrilla casualties in government-paramilitary clashes
KIParClGobPar, Number of paramilitary casualties in government-paramilitary clashes
KIGobClGobPar, Number of government casualties in government-paramilitary clashes
KICivClGobPar, Number of civilian casualties in government-paramilitary clashes
KITotClGobPar, Total number of casualties in government-paramilitary clashes
KGueClGuePar, Number of guerrillas killed in guerrilla-paramilitary clashes
KParClGuePar, Number of paramilitaries killed in guerrilla-paramilitary clashes
KGobClGuePar, Number of government members killed in guerrilla-paramilitary clashes
KCivClGuePar, Number of civilians killed in guerrilla-paramilitary clashes
KTotClGuePar, Total number of killings in guerrilla-paramilitary clashes
IGueClGuePar, Number of guerrillas injured in guerrilla-paramilitary clashes
IParClGuePar, Number of paramilitaries injured in guerrilla-paramilitary clashes
IGobClGuePar, Number of government members injured in guerrilla-paramilitary clashes
ICivClGuePar, Number of civilians injured in guerrilla-paramilitary clashes
ITotClGuePar, Total number of injured in guerrilla-paramilitary clashes

KIGueClGuePar, Number of guerrilla casualties in guerrilla-paramilitary clashes
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KIParClGuePar, Number of paramilitary casualties in guerrilla-paramilitary clashes

KIGobClGuePar, Number of government member casualties in guerrilla-paramilitary clashes

KICivClGuePar, Number of civilian casualties in guerrilla-paramilitary clashes

KITotClGuePar, Total number of casualties in guerrilla-paramilitary clashes

Appendix 2: the Correspondence Analysis Plat-
form

This Appendix and the next introduce important aspects of Correspondence
Analysis and hierarchical clustering. Further reading is to be found in [2] and
[17].

Analysis Chain

1. Starting point: a matrix that cross-tabulates the dependencies, e.g. fre-
quencies of joint occurrence, of an observations crossed by attributes ma-
trix.

2. By endowing the cross-tabulation matrix with the x? metric on both ob-
servation set (rows) and attribute set (columns), we can map observations
and attributes into the same space, endowed with the Euclidean metric.

3. A hierarchical clustering is induced on the Euclidean space, the factor
space.

4. Interpretation is through projections of observations, attributes or clusters
onto factors. The factors are ordered by decreasing importance.

Various aspects of Correspondence Analysis follow on from this, such as
Multiple Correspondence Analysis, different ways that one can encode input
data, and mutual description of clusters in terms of factors and vice versa. In
the following we use elements of the Einstein tensor notation of [2]. This often
reduces to common vector notation.

Correspondence Analysis: Mapping y? Distances into Eu-
clidean Distances

e The given contingency table (or numbers of occurrence) data is denoted
kry= {k/’]](i,j) = k‘(l,j),’t e€el,je J}

e [ is the set of observation indexes, and J is the set of attribute in-
dexes. We have k(i) = > ._;k(i,7). Analogously k(j) is defined, and

k=3 icrjer k(i)

e Relative frequencies: fr; = {fi; = k(i,j)/k;i € I,j € J} C Ry, simi-
larly fr is defined as {f; = k(i)/k;i € I,j € J} C Ry, and f; analogously.

Jje€J
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e The conditional distribution of f; knowing ¢ € I, also termed the jth
profile with coordinates indexed by the elements of I, is:

[y =A{fj = fij) fi = (kij [R) [ (ki JK); £ > 0§ € J}
and likewise for f7.

e What is discussed in terms of information focusing in the text is under-
pinned by the principle of distributional equivalence. This means that if
two or more profiles are aggregated by simple element-wise summation,
then the x? distances relating to other profiles are not effected.

Input: Cloud of Points Endowed with the Chi Squared Met-
ric

e The cloud of points consists of the couples: (multidimensional) profile
coordinate and (scalar) mass. We have N;(I) = {(f, fi);i € I} C Ry,
and again similarly for Ny(.J).

e Included in this expression is the fact that the cloud of observations,
Ny(I), is a subset of the real space of dimensionality |J| where |.| de-
notes cardinality of the attribute set, J.

e The overall inertia is as follows:
M?*(Ny(I)) = M*(N;(J)) = lfrs = frfsll3,4,
= Y (fiy— L5521k
iel,jeJ

e The term || f1; — frfsl7, ;, is the x* metric between the probability distri-
bution f;; and the product of marginal distributions f;f;, with as center
of the metric the product f7f;.

e Decomposing the moment of inertia of the cloud N;(I) — or of Ny(J)
since both analyses are inherently related — furnishes the principal axes of
inertia, defined from a singular value decomposition.

Output: Cloud of Points Endowed with the Euclidean Met-
ric in Factor Space

e The 2 distance with center f; between observations i and i’ is written
as follows in two different notations:

g i’ ! 4 . 2
d(Z,ZJ_fJ ||?J :ZT] <J;j_ J;z’j>

J
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e In the factor space this pairwise distance is identical. The coordinate
system and the metric change.

e For factors indexed by a and for total dimensionality N (N = min {|I|—
1, |J|—1}; the subtraction of 1 is since the x? distance is centered and hence
there is a linear dependency which reduces the inherent dimensionality by

1) we have the projection of observation i on the ath factor, F,, given by
F,(i):

i, i) = > (Fali) = Fa(i))? (1)

a=1..N

e In Correspondence Analysis the factors are ordered by decreasing moments
of inertia.

e The factors are closely related, mathematically, in the decomposition of
the overall cloud, N;(I) and Ny(J), inertias.

e The eigenvalues associated with the factors, identically in the space of
observations indexed by set I, and in the space of attributes indexed by
set J, are given by the eigenvalues associated with the decomposition of
the inertia.

e The decomposition of the inertia is a principal axis decomposition, which
is arrived at through a singular value decomposition.

Dual Spaces and Transition Formulas

_1 .
Foli) =Xa? Y fiGalj) for a=1,2,...Nyi €T
jeJ

Galj) = Aa? S fIFai) fora=1,2,...Nij e J
el

e Transition formulas: The coordinate of element ¢ € I is the barycenter
of the coordinates of the elements j € J, with associated masses of value
given by the coordinates of f; of the profile fj. This is all to within the

1

Ao 2 constant.

e In the output display, the barycentric principle comes into play: this allows
us to simultaneously view and interpret observations and attributes.
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Appendix 3: Hierarchical Clustering

Sequence-Constrained Hierarchical Clustering

Background on hierarchical clustering in general, and the particular algorithm
used here, can be found in [I6]. The sequence constraint considered here is, for
example, the total order involved in a time series.

Consider the projection of observation i onto the set of all factors indexed by
a, {F, (i)} for all a, which defines the observation i in the new coordinate frame.
This new factor space is endowed with the (unweighted) Euclidean distance,
d. We seek a hierarchical clustering that takes into account the observation
sequence, i.e. observation i precedes observation i’ for all 7,7 € I. We use the
linear order on the observation set.

Agglomerative hierarchical clustering algorithm:

1. Consider each observation in the sequence as constituting a singleton clus-
ter. Determine the closest pair of adjacent observations, and define a
cluster from them.

2. Determine and merge the closest pair of adjacent clusters, ¢; and ¢y, where
closeness is defined by d(c1, o) = max {d; such that i € ¢1,7 € ¢o}.

3. Repeat the second step until only one cluster remains.

This is a sequence-constrained complete link agglomeration criterion. The
cluster proximity at each agglomeration is strictly non-decreasing.

Recent application of this method can be found in [21], relating to the se-
quence of scenes in a film script (further discussed in [13]).

How a Hierarchy Expresses Change

Consider Figure[I2] The schematic representation, Figure[12]left, is of document
retrieval where the query is in the upper right. In Figure[I2]right the ultrametric
distance is illustrated.

Further discussion of how a hierarchy expresses the semantics of change and
distinction, themes that are central in this article, can be found in [20].

The hierarchies that we induce on given data are based on an embedded set
of clusters. Through a series of n — 1 agglomerations starting from n terminal
nodes, the hierarchical clustering is constructed. The dendrogram tree has, by
construction, two-way branchings at each node.

Appendix 4: Haar Wavelet Transform of a Den-
drogram

The discrete wavelet transform is a decomposition of data into spatial and fre-
quency components. In terms of a dendrogram these components are with re-
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Figure 12: Left: The query is on the far right. While we can easily determine
the closest target (among the three objects represented by the dots on the left),
is the closest really that much different from the alternatives? Right: The strong
triangular inequality defines an ultrametric: every triplet of points satisfies the
relationship: d(d, z) < max{d(z,y),d(y, z)} for distance d. Cf. by reading off the
hierarchy, how this is verified for all z,y, z: d(z, z) = 3.5;d(x,y) = 3.5;d(y, 2) =
1.0. In addition the symmetry and positive definiteness conditions hold for any
pair of points.

spect to, respectively, within and between clusters of successive partitions. We
show how this works taking the data of Table

The hierarchy built on the 8 observations of Table 2] is shown in Figure

Something more is shown in Figure namely the detail signals (denoted
+d) and overall smooth (denoted s), which are determined in carrying out the
wavelet transform, the so-called forward transform.

The inverse transform is then determined from Figure in the following
way. Consider the observation vector xo. Then this vector is reconstructed
exactly by reading the tree from the root: s; + d7 = x2. Similarly a path from
root to terminal is used to reconstruct any other observation. If x5 is a vector of
dimensionality m, then so also are s; and d7, as well as all other detail signals.

This procedure is the same as the Haar wavelet transform, only applied to
the dendrogram and using the input data.

A complete specification of this wavelet transform for the data in Table [2]is
shown in Table 3

The principle of “folding” the hierarchy onto an external signal is as fol-
lows. The wavelet transform codifies the hierarchy. Having that, we apply the
“codification” of the hierarchy with the new, external signal as input.

Wavelet regression entails setting small and hence unimportant detail coef-
ficients to 0 before applying the inverse wavelet transform.
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Sepal.L Sepal W Petal. ., Petal W

00 ~J O U= W N+~

5.1
4.9
4.7
4.6
5.0
5.4
4.6
5.0

3.5
3.0
3.2
3.1
3.6
3.9
3.4
3.4

1.4
1.4
1.3
1.5
14
1.7
1.4
1.5

0.2
0.2
0.2
0.2
0.2
0.4
0.3
0.2

Table 2: First 8 observations of Fisher’s iris data. L and W refer to length and

width.
s7 d7 d6 d5 d4 d3 d2 d1
Sepal.L.  5.146875 0.253125 0.13125 0.1375 —0.025 0.05 —0.025 0.05
Sepal W 3.603125 0.296875 0.16875 —0.1375 0.125 0.05 —0.075 —0.05
PetalL  1.562500 0.137500 0.02500 0.0000 0.000 -0.10 0.050 0.00
Petal. W 0.306250 0.093750 —0.01250 —0.0250 0.050 0.00 0.000 0.00

Table 3: The hierarchical Haar wavelet transform resulting from use of the first
8 observations of Fisher’s iris data shown in Table 2l Wavelet coefficient levels
are denoted d1 through d7, and the continuum or smooth component is denoted

s7.
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Figure 13: Dendrogram on 8 terminal nodes constructed from first 8 values of
Fisher iris data. (Median agglomerative method used in this case.) Detail or
wavelet coefficients are denoted by d, and data smooths are denoted by s. The
observation vectors are denoted by x and are associated with the terminal nodes.
Each signal smooth, s, is a vector. The (positive or negative) detail signals, d,
are also vectors. All these vectors are of the same dimensionality.
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More discussion can be found in [I§].
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